If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/16y^2=81
We move all terms to the left:
1/16y^2-(81)=0
Domain of the equation: 16y^2!=0We multiply all the terms by the denominator
y^2!=0/16
y^2!=√0
y!=0
y∈R
-81*16y^2+1=0
Wy multiply elements
-1296y^2+1=0
a = -1296; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-1296)·1
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72}{2*-1296}=\frac{-72}{-2592} =1/36 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72}{2*-1296}=\frac{72}{-2592} =-1/36 $
| -3/5w-7/3=3/2 | | -5x+18=-42 | | -20p-8=-19p | | -x-3=2x-5 | | 8x-4-2x-10=3x-15 | | -4m+10+1-4m=0 | | 3x=2-3/28 | | 3x+12=-2x+27 | | -5(-5+4a)=-23a-8a | | 15+.75x=13+.5x | | x(x+5)+2x+1=30 | | 7-8q=-9q | | 3y=-9×+15 | | X/2+3=x+6 | | 5p+7=-5+5p+6p | | 9+a/5=10 | | 4^3x/8^4x=2 | | 14-4m=42 | | 5n+7=3n-5 | | 11-13r=-17-15r | | 7/3x+14/3=8/3x+1 | | 5x+-4=6x+7 | | -19=v+6 | | 3(9x-2)^2+18x-4=x | | 38=-42+4w | | X(x–2)=x(x–1) | | -9(x-4)=11(3-x) | | 22+9f=49 | | -16.5m-15.98=2.4m+18.73+7.8 | | x+26.50=41.00 | | -5-2(n-4)=3(1+5n) | | 15=2t11 |